Effects of (in)homogeneous pressure distribution on the performance of battery materials using operando dilatometry

Philip Daubinger, Mara Göttlinger, Sarah Hartmann, Guinevere A. Giffin
Fraunhofer Institute for Silicate Research ISC, Würzburg, Germany
Effects of (in)homogeneous pressure distribution on the performance of battery materials using operando dilatometry

Impact of increasing energy density on dilation in lithium-ion cells

Possible ways to increase energy density in lithium-ion batteries

- Optimized cell design
- New materials (e.g. silicon or lithium metal)

How does optimizing the energy density of lithium-ion cells affect their performance and dilation behavior?
Graphite (3.8 mAh/cm², 87.5 μm) vs. NCM111 (3.5 mAh/cm², 90 μm)

High initial irreversible swelling of 8.5%

Reversible swelling of 9.2% (8.1 μm)

The dilatation of NCM 111 with Δd ~ 0% - 1% is neglected
Effects of (in)homogeneous pressure distribution on the performance of battery materials using *operando* dilatometry.

Impact of (in)homogeneous pressure distribution

- **Homogeneous pressure distribution**: negligible mechanical stress-induced capacity reduction up to 191 N;
- **Inhomogeneous pressure distribution**: lower capacity being related to contact losses, partly delamination and localized increased tortuosity and ionic transport resistance inside the separator.
Effects of (in)homogeneous pressure distribution on the performance of battery materials using operando dilatometry

Dilation behavior of different battery materials

State of the art materials: NCM, Graphite and LTO

- Electrodes: Graphite (~2.2 mAh/cm², ~47 μm), LTO (~2.1 mAh/cm², ~150 μm), NCM111 (~2.1 mAh/cm², ~80 μm)
- Electrolyte: LP 57 (1 M LiPF₆ in EC/EMC)
- Separator: Celgard 2500 (PP, 25 μm)
- Applied pressure: 0.05 MPa

In SoA’s lithium-ion batteries, dilation is mostly related to graphite.
Effects of (in)homogeneous pressure distribution on the performance of battery materials using operando dilatometry

Dilation behavior of different battery materials

Next generation materials: Silicon vs. LTO

- Pressure-dependent dilation of silicon
- High porosity of the electrodes and fiber-based separator prevent significant dilation.

- Electrodes: Silicon (~2.5 mAh/cm², ~20 µm, porosity ~70%, used capacity 33%), LTO (2.1 mAh/cm², ~150 µm)
- Electrolyte: LP 57 (1 M LiPF₆ in EC/EMC) + 5 wt.% FEC
- Separator: Whatman GF/C (glass fiber, 260 µm)
Effects of (in)homogeneous pressure distribution on the performance of battery materials using operando dilatometry

Dilation behavior of different battery materials

Next generation materials: Lithium vs. LTO

- Significant expansion of lithium metal during cycling due to lithium stripping/plating.
- Parasitic side reactions of lithium with the carbonate-based electrolyte increase the thickness change.

Electrodes: Lithium metal (~380 µm), LTO (~2.1 mAh/cm², ~150 µm)
Electrolyte: LP 57 (1 M LiPF₆ in EC/EMC)
Separator: Celgard 2500 (PP, 25 µm)
Applied pressure: 0.05 MPa
Thank you

Feel free to contact me!

Philip Daubinger
Lithium-ion battery analytics
philip.daubinger@isc.fraunhofer.de
Find me on LinkedIn via QR code

Fraunhofer R&D Center Electromobility (FZEB)
Fraunhofer Institute for Silicate Research ISC
Neunerplatz 2 | 97082 Würzburg
www.fzeb.fraunhofer.de