Customized design of lithium-ion batteries for residential photovoltaic systems: Techno-economic analysis and optimization

Thematic block:

Author:

Other authors:

Institution/company:

 

Summary:

Compared to the electric vehicles, the cycling profiles of batteries employed in the residential storage, regardless of dispatch strategy, hold a low value of power/energy ratio. This feature theoretically allows to manufacture batteries for stationary storage applications at a lower cost thanks to less design constraints at the electrode and cell levels [1]. This inspires dedicated studies to be conducted in order to quantify the prospects of cost reduction in the behind-the-meter batteries using optimum and customized designs at electrode and cell levels.
In this work we present the result of a techno-economic analysis aiming to assess the profitability of adding battery packs composed of LiNi0.33Mn0.33Co0.33/Graphite pouch cells to the residential PV systems. To do so, we couple a physics-based battery model [2] with a process-based manufacturing cost model [3] to optimize the return of investment for a series of typical prosumers, characterized by their local PV generation, demand, and installed battery size. The modeling framework enables determining the sensitivity of the cost advantage and the performance of batteries to a wide range of design characteristics including electrode thickness, electrode volume fraction, cell width, aging rate, electricity pricing, and manufacturing rates. Although different in the details but the common feature of the designs considered in this study is the higher mass loading of the electrochemically active materials in cells compared to the state-of-the-art batteries employed in the electric vehicles.
Our results suggest that the transition from the conventional EV battery design to a more specific design for the residential storage sector can lead to 10-40% lower investment costs with a minimum compromise on the system’s power capability. Such a design transition translates into a higher return of investment by almost 60%, i.e. from -16% to 46% for an average Belgian residential household with PV peak power and battery size of 6 kW and 6kWh, respectively.
ACKNOWLEDGMENT
The work is (partially) supported by the energy transition funds project “BREGILAB’’ organized by the FPS economy, S.M.E.s, Self-employed and Energy (Met de steun van het Energietransitiefonds).
References
[1] Asymptotic Cost Analysis of Intercalation Lithium-Ion Systems for Multi-hour Duration Energy Storage. Rebecca E. Ciez, Daniel Steingart. 2020, Joule, Vol. 4.
[2] Simulation and Optimization of the Dual Lithium Ion Insertion Cell. T. F. Fuller, M. Doyle, J. Newman. 1994, Journal of Electrochemical Society, Vol. 141.
[3] A techno-economic analysis and optimization of Li-ion batteries for light-duty passenger vehicle electrification. A. Sakti, J. J. Michalek ,E. R.H. Fuchs, J. F. Whitacre. 2015, Journal of Power Sources, Vol. 273.

Would you like to contact this author?
We are happy to forward your request / feedback.

[su_button url="mailto:bozorg.khanbaei@uhasselt.be" target="blank" background="#98c219" color="#ffffff" size="4" radius="0" icon="icon: envelope-open" icon_color="#fff"]EMAIL TO THE AUTHOR[/su_button]

Call-for-Papers
ist eröffnet

Wir freuen uns auf Ihre Einreichung
bis zum 31. Oktober 2022