ID der Einreichung:

Titel:

CFP2022-917

qTSL: A Multilayer Control Framework for Managing Capacity, Temperature, Stress, and Losses in Hybrid Balancing Systems
Lecture
Pack design & thermal management
Performance

This work deals with the design and validation of a control strategy for hybrid balancing systems (HBSs), an emerging concept that joins battery equalization and hybridization with supercapacitors (SCs) in the same system. To control this system, we propose a two-layer model predictive control (MPC) framework. The first layer determines the optimal state-of-charge (SoC) reference for the SCs considering long load forecasts and simple pack-level battery models. The second MPC layer tracks this reference and performs charge and temperature equalization, employing more complex module-level battery models and short load forecasts. This division of control tasks into two layers, running at different time scales and model complexities, enables us to reduce computational effort with a small loss of control performance. Experimental validation in a small-scale laboratory prototype demonstrates the effectiveness of the proposed approach in reducing charge, temperature, and stress in the battery pack.

Downloads (optional)

Hinweis: Möglicherweise sind nicht alle Download-Felder mit Dokumenten hinterlegt.

Autor

Unternehmen/Institut

Co-Autoren

Ricardo de Castro, Hélder Pereira, Rui Esteves Araújo, Herschel C. Pangborn

Call-for-Papers
ist eröffnet

Wir freuen uns auf Ihre Einreichung
bis zum 31. Oktober 2022